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Abstract

There are some basic models for pneumatic cylinders that result in
modeling cylinders as constant-force devices, or nearly so. This is a rough
first pass at creating a model that is a little more sophisticated. This
model assumes that the air in the cylinder is adiabatic; that is, no heat
transfer takes place. This model will be a differential equation intended to
be used in conjunction with a numerical DE solver due to the non-linear
nature of many conditions.

Pneumatic pistons can be used for many scenarios- they can act as
quick stops, can push or pull heavy loads, or can be configured to quickly
launch objects. Depending on the nature of the system, they can be-
have quite differently, and this model may capture more of the underlying
physics that affects these various use cases.

System Definition

We will analyze the open system that is the air contained within a pneumatic
cylinder, plus the air in the hose leading up to it (inclusion of the hose will
become of crucial importance and will be evident later on).

Pin, V̇– in, Tin

ms

Ps
V– s
Ts

v, x

Air at pressure Pin and temperature Tin enters the cylinder at rate V̇– in. It
mixes with air in the cylinder (ms, V– s) and is assumed to become of uniform
pressure and temperature Ps and Ts.

The piston ram is moving at velocity v and with position x. x is zero when
the cylinder is bottomed out (no air in the cylinder).
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MPsA Fload

PatmA

The cylinder itself is considered to have a mass M and sees the cylinder
pressure, a resistive force Fload, and atmospheric pressure.

Conservation Principles In The Cylinder

First, let’s apply conservation of mass to the air.

d

dt
msys =

∑
+in

ṁ

d

dt
ms = ṁin (1)

We can use the ideal gas law PV– = mRT to write this in terms of knowns.

ṁin =
PinV̇– in
RTin

We’ll assume that the primary flow restriction comes from the tube. We can
use an equation derived from this empirical pipe flow equation in The Engineer-
ing ToolBox.

V̇– = 0.0197862(d5tube[Pin − Patm][Pin − Ps]/Ltube)
20/37

(Assuming units of Pa, m, and m3/s)

ṁin =
0.0197862

RTin
(d5tube[Pin − Patm][Pin − Ps]/Ltube)

20/37 (2)

Now, let’s apply conservation of energy.

d

dt
Esys =

∑
Q̇in +

∑
Ẇin +

∑
+in

ṁ(v2/2 + gz + h)

We will assume:

• The energy of the system is entirely thermal; Esys = msu(T )
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• No heat transfer; Q̇in = 0

• Work is out of the system, defined by the pressure of the system and
velocity of the ram; Ẇin = −~F · ~v = −PsAv

• Mass transfer into the system has negligible velocity (v) and head height
(gz), leaving only enthalpy h(T ).

d

dt
[msu(T )] = −PsAv + ṁin(h(Tin + (

V̇–

π/4 dtube
)2)

The derivative here is quite ugly, since both the mass and temperature of
the system are changing. However, it can be broken up with the product rule
( ddt [xy] = y dxdt + xdydt ).

ms
du(Ts)

dt
+ u(Ts)

dms

dt
= −PsAv + ṁin(

V̇–

π/4 dtube
)2 + ṁinh(Tin)

ms
du(Ts)

dt
= ṁinh(Tin) − PsAv − u(Ts)

dms

dt
+ ṁin(

V̇–

π/4 dtube
)2

Recognizing that u(T ) and h(T ) can be approximated as u(T ) = cpT and
h(T ) = cvT , we can then solve the equation for dTs

dt .

dTs
dt

=
ṁin[cvTin − cpTs + (

˙V–
π/4 dtube

)2] − PsAv

cpms
(3)

All of these are knowns or states aside from Ps, which can be determined
with the ideal gas law, and the modeling of the system volume as based on
cylinder extension, crossectional area, and initial (i.e. hose) dead volume.

Ps =
msRTs
V– s

Ps =
msRTs

V– dead + xA
(4)

Conservation Principles on the Piston

We can simply apply conservation of linear momentum to the piston.

d

dt
Psys =

∑
F +

∑
ṁv

We will assume:
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• No mass transfer in this system, so d
dtPsys = M dv

dt and ṁ = 0

• The forces acting on the piston are the cylinder pressure, atmospheric
pressure, and the external load.

M
dv

dt
= PsA− PatmA− Fload

dv

dt
=

(Ps − Patm)A− Fload
M

(5)

We are also interested in the position of the piston.

dx

dt
= v (6)

Limiting the Model

In review we have:

• A model for rate of change of ms

• A model for rate of change of Ts

• Supporting equation for cylinder pressure Ps

• Supporting equation for massflow into cylinder ṁ

• A model for velocity v

• A model for position x

We simply now need initial conditions, ”bumper” conditions, and termina-
tion criteria.

We will assume the initial temperature Ts will be set to that of the input
gas Tin. (This may seem like it would negate all the point of this model, but
recall that when gases expand/contract, they change pressure)

Ts(t = 0) = Tin (7)

The initial mass of cylinder air can be found with the ideal gas law, assuming
we start at atmospheric pressure (wholly unpressurized)

ms(t = 0) =
PatmLtube

π
4 d

2
tube

RTs(t = 0)
(8)

4



Assume the piston starts from rest.

x(t = 0) = 0 (9)

v(t = 0) = 0 (10)

And that the piston cannot go past its endstops at x = xf or x = 0.

if x ≥ xf then x = xf , v ≤ 0 (11)

if x ≤ 0 then x = 0, v ≥ 0 (12)

We will terminate our simulation when we reach the endstop and fully pres-
surize.

terminate simulation if x ≥ xf and Ps ≥ Pin (13)

The Full Model

ṁin =
0.0197862

RTin
(d5tube[Pin − Patm][Pin − Ps]/Ltube)

20/37 (2)

Ps =
msRTs

Ltube
π
4 d

2
tube + xA

(4)

if x ≥ xf then x = xf , v ≤ 0 (11)

if x ≤ 0 then x = 0, v ≥ 0 (12)

d

dt
ms = ṁin (1)

dTs
dt

=
ṁincvTin − PsAv − cpTsṁin

cpms
(3)

dv

dt
=

(Ps − Patm)A− Fload
M

(5)

dx

dt
= v (6)

Ts(t = 0) = Tin (7)

ms(t = 0) =
PatmLtube

π
4 d

2
tube

RTs(t = 0)
(8)

v(t = 0) = 0 (10)

x(t = 0) = 0 (9)

terminate if x ≥ xf and Ps ≥ Pin (13)
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There’s a lot going on here. But let’s do a sanity check and see if there’s
going to be any issues going forth.

The big equation of interest is dTs/dt.

• If the heat capacity or system mass is larger, then the rate of temperature
change decreases (makes sense)

• If the cylinder expands (v > 0) then the gas expands, lowering the tem-
perature.

• Let’s focus on this term

ṁincvTin − cpTsṁin

= ṁ[cvTin − cpTs]

= ṁ[h(Tin) − u(Ts)]

= ṁ[u(Tin) + Pin/ρin − u(Ts)]

≈ ṁ[u(Tin − Ts) + Pin/ρin]

Recognizing that Tin > Ts since the cylinder is expanding, we see that
yes, the massflow into the system corresponds to higher thermal energy
transfer, and higher pressure energy transfer.

• The mass of the system ms is in the denominator - if this is zero, the
derivative would not exist, so it is imperative that we begin our simulation
with some mass (hence, the dead mass Ltube

π
4 d

2
tube term)

Implemented Simulation and Examples

This has been implemented into my Swiss Army Engineer suite. Here are some
example cases, starting with a base case.

This case has mass, and a load much higher than the mass (simulating, say,
a piston pushing on a spring). The results aren’t too interesting - air inrushes
into the cylinder rather quickly, producing the quadratic position profile you’d
expect of a constant-force system.
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This case increases the mass by ten times. The timescale, accordingly,
stretches out, taking much longer to reach its end stop.

This case removes the load and returns to the lighter system mass, so that
this is a purely inertial system. In this case, the piston accelerates like normal,
but the cylinder pressure actually begins to decrease as the inertia of the system
carries it further forwards. Eventually the hardstop is hit, and at this point the
piston can fully pressurize with air.

What happens if we choke it out even further, by shrinking the line diameter?

The line diameter here has been shrunk to 2mm. We see this same decayed
acceleration as in the previous example, but to a larger degree.
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If we add a large load, the position curve becomes linear, as the cylinder has
to fight the heavy load and its air supply eventually becomes the limiting factor
on speed.

If we make the load an expression, we could model a piston pulling on a
spring, giving us this very neat mass-spring system.

Validation

No validation has been performed yet on these models, as I don’t have access to
the equipment to test them. If anyone wants to perform this testing, it would
be very cool!

Future Improvements (and when to say no)

The next obvious improvement to make would be to model the flow restriction
provided by valves. Beyond that, looking at pressure drop in the tank as air
is consumed, or flow restriction as a result of the pressure regulator seems to
me to be splitting hairs, and chasing high-speed actuation which would require
significant testing anyways.
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