
Documentation and Validation of EveryCalc’s Beam Tool

Thaddeus Hughes
hughes.thad@gmail.com

thaddeus-maximus.github.io

June 2, 2020

Abstract

Beams are common structures for structural analysis. As such many analytical formulas
for specific use cases exist. Complex cases can also be computed by use of static super-
position, or the utilization of a finite-element (FE) model. I created a web interface for a
rudimentary beam FE model.

1 How does FE work?
A finite-element model works generally by solving a matrix equation of the form

{F} = [K]{q}. (1)

Where F is the load vector, [K] is the stiffness matrix, and q is the displacement vector. This
may be recognized as simply a matrix form of a spring equation F = kδ, which it is! The FE
model works by splitting a large component into several small springs (elements) with endpoints
(nodes).

There are a few methods to solve this equation. One simple one is to multiply both sides by the
matrix inverse (since there is no direct equivalent of division with matrices). This method does
not scale well- but it works with the few elements we will need for this calculator.

[K]−1{F} = [K]−1[K]{q} = {q} (2)

There are many different forms of stiffness, depending on the exact element used.

We will use a 2D beam element derived from Euler-Bernoulli beam theory. This element has
four degrees of freedom: vertical deflection v and rotation ψ at each end node.

v1 v2

ψ1 ψ2

Figure 1: A beam with a fixed support, a pinned support, and a force load.

It can be found that the equation derived from euler-bernoulli beam theory is

1


F1
M1
F2
M2

 =


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2



v1
ψ1
v2
ψ2

 (3)

This is just one element though! How do we link the elements together?

2 Direct Assembly
One simple way is by direct assembly. It can be noticed that (roughly) the matrix looks something
like

{
F1
F2

}
=
[
K −K
−K K

]{
u1
u2

}
(4)

If we had two elements linked together like so:

A B1 2 3

Figure 2: Two connected beams.

These two beams share node 2. That is to say, they both see the forces from node 2, and the
deflection at node 2. This leads us to combine the equations for each element as so:

F1
F2
F3

 =

 KA −KA 0
−KA KA +KB −KB

0 −KB KB

u1
u2
u3

 (5)

We’ve linked the nodes together, but we now need to constrain them. These beams are cur-
rently floating in space- we need to anchor them otherwise our displacements are meaningless
(furthermore, the matrix [K] would be singular and unsolvable). For example, let’s apply the
constraint that node 1 is fixed; that is, u1 = 0. As a result, the associated column in [K] (the
first column) does not matter. Any loads applied to the node also do not matter since they
would be absorbed by the fixed constraint. This allows us to remove columns and rows 1 of the
stiffness matrix, degrees of freedom 1, and load 1, changing our equation to:







F1

F2

F3







=





KA −KA 0

−KA KA +KB −KB

0 −KB KB











u1

u2

u3







{
F2
F3

}
=
[
KA +KB −KB

−KB KB

]{
u2
u3

}
(6)

At this point we could plug in values F2 and F3, and solve with the matrix inverse method.

2

3 Application to Beams
Let’s show how this would work with a beam. Consider the following example:

0 L 2L 3L 4L

W

Figure 3: A beam with a fixed support, a pinned support, and a force load.

We can start by creating a general stiffness matrix with the general assembly method:

[K] =



12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 24 12L −12 6L
6L 2L2 12L 8L2 −6L 2L2

−12 −6L 24 12L −12 6L
6L 2L2 12L 8L2 −6L 2L2

−12 −6L 24 12L −12 6L
6L 2L2 12L 8L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


(7)

Zeroes have been omitted from matrix to aid in readability.

The load vector is simply

F =



F1
M1
F2
M2
F3
M3
F4
M4
F5
M5



=



0
0
0
0
−W

0
0
0
0
0



. (8)

Combining this yields the full, unconstrained equation



0
0
0
0
−W

0
0
0
0
0



=



12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 24 0 −12 6L
6L 2L2 0 8L2 −6L 2L2

−12 −6L 24 0 −12 6L
6L 2L2 0 8L2 −6L 2L2

−12 −6L 24 0 −12 6L
6L 2L2 0 8L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2





v1
ψ1
v2
ψ2
v3
ψ3
v4
ψ4
v5
ψ5



. (9)

3

The fixed support at node 2 removes degrees of freedom v2, ψ2. The pinned support at node 3
removes only v3 (pin still permits rotation).































































0

0

0

0

0

0

−W

0

0

0































































=

































12 6L −12 6L

6L 4L2
−6L 2L2

−12 −6L 24 0 −12 6L

6L 2L2 0 8L2
−6L 2L2

−12 −6L 24 0 −12 6L

6L 2L2 0 8L2
−6L 2L2

−12 −6L 24 0 −12 6L

6L 2L2 0 8L2
−6L 2L2

−12 −6L 12 −6L

6L 2L2
−6L 4L2































































































v1

ψ1

v2

ψ2

v3

ψ3

v4

ψ4

v5

ψ5

































































0
0
0
−W

0
0
0


=



12 6L
6L 4L2

8L2 −6L 2L2

−6L 24 0 −12 6L
2L2 0 8L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2





v1
ψ1
ψ3
v4
ψ4
v5
ψ5


(10)

At this point, the matrix equation could be solved to achieve the nodal displacement vector.
Afterwards, the resulting displacement matrix could be used with the unconstrained stiffness
matrix to determine the loads at the constraints.

4 Prescribing Displacements
But, what if instead, we wanted to prescribe a displacement rather than a force? This throws
a wrench in this whole process... or at least would mean we’d have to go back to the drawing
board, and try matrix partitioning. Let’s consider a different setup, of the form

{
{Fu}
{Fp}

}
=
[
[Ku,u] [Ku,p]
[Kp,u] [Kp,p]

]{
{qu}
{qp}

}
, (11)

where {Fu} and {Fp} are the portions of the load vector corresponding to the unprescribed and
prescribed-displacement portions, respectively. The same holds for {qu} and {qp}. There’s no
true sub-vectoring going on here, the brackets are just to denote that these are bits of matrices
inside the larger matrices, not just scalar values.

We can expand out first row of the matrix equation to find that

{Fu} = [Ku,u]{qu}+ [Ku,p]{qp} (12)

Solving this yields

[Ku,u]{qu} = {Fu} − [Ku,p]{qp} (13)

4

which is of the form [M]{x} = {b} (since {qp} is the prescribed displacements), so can be solved.

After finding the non-prescribed displacements, the second row of the matrix equation can be
expanded to

{Fp} = [Kp,u]{qu}+ [Kp,p]{qp} (14)

which can be used to compute the forces required to produce the prescribed displacements.

We would then simply need to re-build the force and displacement vectors, and then we can
proceed to post-processing.

5 Post Processing and Shape Functions
Usually, a displacement field is desired rather than merely the nodal values. Getting deflection at
arbitrary points requires the use of shape functions. In the derivation of the beam stiffness matrix
(which this paper does not cover), particular shape functions were used: the Hermite shape
functions. These are nondimensional equations that represent the contribution of one nodal
degree of freedom to the displacement field in an element. By combining these displacement
fields, we can determine the total displacement field.

Figure 4: Hermite shape functions

These hermite shape functions can be represented as:

N =


1/4(1− ζ2(2 + ζ)
L/8(1− ζ)2(ζ + 1)
1/4(1 + ζ)2(2− ζ)
L/8(1 + ζ)2(ζ − 1)


T

(15)

Where L is the element length and ζ is a nondimensional parameter that is -1 at the left of the
element, +1 at the right, and 0 in the center.

5

ζ = 2 x
L
− 1 (16)

Where x is the distance from the left of the element.

The functions can be used to find the displacement field v:

v = {N}{q} =


1/4(1− ζ2(2 + ζ)
L/8(1− ζ)2(ζ + 1)
1/4(1 + ζ)2(2− ζ)
L/8(1 + ζ)2(ζ − 1)


T 

v1
ψ1
v2
ψ2

 (17)

This helps us plot the displacement field, but what about the slope, bending moment, and shear
force?

The slope θ is simply the derivative of the displacement field v with respect to position x. The
bending moment M and shear force V can also be found from Euler-Bernoulli beam theory.

θ = dv

dx
(18)

M = EI
d2v

dx2 (19)

V = d

dx
(EI d

2v

dx2) = EI
d3v

dx3 (20)

Assuming elastic modulus E and second moment of area I are constant over the element.

To find these derivatives of v, we can use the shape functions, ignoring the nodal displacements
since they do not vary with x.

dv

dx
= d

dx
[{N}{q}] = d{N}

dx
{q} (21)

The chain rule can be used to help find these derivatives.

d{N}
dx

= d{N}
dζ

dζ

dx
(22)

d2{N}
dx2 = d2{N}

dζ2 (dζ
dx

)2 + d{N}
dζ

d2ζ

dx2 (23)

d3{N}
dx3 = d3{N}

dζ3 (dζ
dx

)3 + 3d
2{N}
dζ2

dζ

dx

d2ζ

dx2 + d{N}
dζ

d3ζ

dx3 (24)

Looks ugly! But luckily, the higher order derivatives of ζ are zero.

dζ

dx
= 2
L

(25)

d2ζ

dx2 = d3ζ

dx3 = 0 (26)

6

d{N}
dx

= d{N}
dζ

2
L

(27)

d2{N}
dx2 = d2{N}

dζ2 (2
L

)2 (28)

d3{N}
dx3 = d3{N}

dζ3 (2
L

)3 (29)

The shape function derivatives are

d{N}
dx

=


3/4(ζ2 − 1)2/L

L/8(3ζ2 − 2ζ − 1)2/L
3/4(ζ2 − 1)2/L

L/8(3ζ2 + 2ζ − 1)2/L


T

d2{N}
dx2 =


(6ζ)/L2

(3ζ − 1)/L
−(6ζ)/L2

(3ζ + 1)/L


T

d3{N}
dx3 =


12/L3

6/L2

−12/L3

6/L2


T

(30)

6 Generalization
How does this get generalized to different, arbitrary, and variable scenarios?

• All of the loads and constraints are gathered and binned by type. Each load is given a node
id.

• The position along the beam for each load or constraint is stored by node id.

• The node ids are sorted by the order of positions.

• Close nodes (those that are within 1/100 of the beam length) are merged so that the corre-
sponding load/constraints share the same node id. The old node id and position is deleted.

• Beam elements are produced between the first and second node, second and third, and so
forth.

• The force matrix is populated with forces

• Direct assembly is performed on the beam elements

• Degrees of freedom corresponding to the node ids where pinned/fixed nodes exist are struck
and removed from the stiffness and force matrices.

• The matrix system of equations is solved

• The resulting nodal displacements are used in conjunction with the shape functions to inter-
polate a displacement field.

7 Sanity Check: are the Shape Functions Appropriate?
Usually finite element methods are used as approximations by employing the use of many, many
elements to approximate the true displacement field. Beam elements, though, are somewhat
unique in that under certain circumstances they will model the underlying diplacement field
exactly. Let’s return to Euler-Bernoulli beam theory. This theory states that the displacement
field q can be represented as

d2

dx2EI
d2v

dx2 = q, (31)

7

where q is a distributed load (i.e. with dimensions of force per unit length). Euler-Bernoulli
beam theory has several assumptions wrapped up in it, such as the requirement that plane
sections remain plane, and no large deflections.

My calculator does not model distributed loads, so q is always zero. Additionally, the cross-
section and elastic modulus remain constant, so E and I can be moved outside of the derivative,
leaving

EI
d4v

dx4 = 0 (32)

d4v

dx4 = 0 (33)

If we integrate both sides repeatedly, we can get the form of v.

∫
d4v

dx4 dx =
∫

0dx (34)∫
d3v

dx3 dx =
∫
c1dx (35)∫

d2v

dx2 dx =
∫
c1x+ c2dx (36)∫

dv

dx
dx =

∫
c1x

2 + c2x+ c3dx (37)

v = c1x
3 + c2x

2 + c3x+ c4 (38)

The shape of v under the assumptions of constant E and I with only point loads is a cubic
polynomial, a function with four degrees of freedom. What else has four degrees of freedom?
Our elements! Using beam elements provides a sufficient quantity of degrees of freedom to provide
exact analytical solutions to problems where Euler-Bernoulli beam theory is appropriate, and
require point loads and constant cross sections. This may sound restrictive, but encompasses
nearly all applications of beams, which is why they are such a powerful modeling tool even in
full-blown FE applications.

8 Validation Examples
Comparison to analytical solutions is a necessary component when validating any FE model.
MechaniCalc has some good analytical solutions I will compare to.

8

https://mechanicalc.com/reference/beam-deflection-tables

8.1 Cantilevered, Intermediate Load

Let E = 69GPa (aluminum), L = 100mm, round bar with d = 5mm, F = 200N , a = 60mm.

I = π

64d
4 = π

64(0.100m)4 = 3.06796× 10−11m4 (39)

δa = −Fa
2

6EI (3L− a) = − 200N × (0.06m)2

6× 69GPa× 30.6796mm4 (3× 0.06m− 0.06m) = 6.802mm (40)

δend = −Fa
2

6EI (3L− a) = − 200N × (0.06m)2

6× 69GPa× 30.6796mm4 (3× 0.1m− 0.06m) = 13.6048mm
(41)

θa/2 = −F (a/2)2

2EI (2L− a/2) = 200N × .03m
2× 69GPa× 30.6796mm4 (2× 0.1m− .03m) = 7.305 deg

(42)
V0→a = F = 200 N (43)
Mx=0 = −F × a = −200N × .06m = −12 Nm (44)

You can plug in the values to the calculator and verify this load case for yourself. I found all of
the above numbers to be accurate.

9

8.2 Simply Supported, Center Moment

Let E = 27557ksi (steel), L = 6in, box bar with w = 0.5in, h = 2in, M = 1200ft− lbf .

I = 1
12bh

3 = 1/3 in4 (45)

δx=1.25in = −Mx

24LEI (L2 − 4 ∗ x2) = −12 ft lbf 1.25 in
24× 6 in 27557 ksi 1/3 in4 ((6in)2 − 4(1.25in)2) = −.4048 thou

(46)

θ1 = −ML

24EI = −1200 ft lbf 6 in
24× 27557 ksi 1/3 in4 = −.02246 deg (47)

V = M/L = 1200ft− lbf/6in = 2400lbf (48)
Mx=L/2 = M/2 = 1200ft− lbf/2 = 600ft− lbf (49)

You can plug in the values to the calculator and verify this load case for yourself. I found all of
the above numbers to be accurate.

10

	How does FE work?
	Direct Assembly
	Application to Beams
	Prescribing Displacements
	Post Processing and Shape Functions
	Generalization
	Sanity Check: are the Shape Functions Appropriate?
	Validation Examples
	Cantilevered, Intermediate Load
	Simply Supported, Center Moment

